Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med ; 18(1): 142, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32564774

RESUMO

BACKGROUND: Glioblastoma (GBM) is one of the most aggressive and vascularized brain tumors in adults, with a median survival of 20.9 months. In newly diagnosed and recurrent GBM, bevacizumab demonstrated an increase in progression-free survival, but not in overall survival. METHODS: We conducted an in silico analysis of VEGF expression, in a cohort of 1082 glioma patients. Then, to determine whether appropriate bevacizumab dose adjustment could increase the anti-angiogenic response, we used in vitro and in vivo GBM models. Additionally, we analyzed VEGFA expression in tissue, serum, and plasma in a cohort of GBM patients before and during bevacizumab treatment. RESULTS: We identified that 20% of primary GBM did not express VEGFA suggesting that these patients would probably not respond to bevacizumab therapy as we proved in vitro and in vivo. We found that a specific dose of bevacizumab calculated based on VEGFA expression levels increases the response to treatment in cell culture and serum samples from mice bearing GBM tumors. Additionally, in a cohort of GBM patients, we observed a correlation of VEGFA levels in serum, but not in plasma, with bevacizumab treatment performance. CONCLUSIONS: Our data suggest that bevacizumab dose adjustment could improve clinical outcomes in Glioblastoma treatment.


Assuntos
Bevacizumab/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Adulto , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Bevacizumab/farmacologia , Linhagem Celular Tumoral , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus
2.
J Transl Med ; 17(1): 75, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30871557

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are small membrane-bound vesicles which play an important role in cell-to-cell communication. Their molecular cargo analysis is presented as a new source for biomarker detection, and it might provide an alternative to traditional solid biopsies. However, the most effective approach for EV isolation is not yet well established. RESULTS: Here, we study the efficiency of the most common EV isolation methods-ultracentrifugation, Polyethlyene glycol and two commercial kits, Exoquick® and PureExo®. We isolated circulating EVs from the bloodstream of healthy donors, characterized the size and yield of EVs and analyzed their protein profiles and concentration. Moreover, we have used for the first time Digital-PCR to identify and detect specific gDNA sequences, which has several implications for diagnostic and monitoring many types of diseases. CONCLUSIONS: Our findings present Polyethylene glycol precipitation as the most feasible and less cost-consuming EV isolation technique.


Assuntos
Ácidos Nucleicos Livres/isolamento & purificação , Vesículas Extracelulares/metabolismo , Polietilenoglicóis/farmacologia , Biomarcadores/metabolismo , Ácidos Nucleicos Livres/genética , Precipitação Química , Exossomos/metabolismo , Humanos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...